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FOREWORD

This report has been prepared to expedite early dissemination of the information generated under

the contract. The dam and conclusions must be consideced preliminary and subject to change as

further progress is made on this program. This is a final report covering the work done during the

5 years of the contract. The NASA Program Manager is Dr. C.C. Charnis.
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1.0 INTRODUCTION

This technical program is the work of the Life Assessment and Methods Technology Section of

GE Aircraft Engines in response to NASA RFP 3-537260, CSTEM (Coupled Structural/

Thermal/Electromagnetic) Analysis/Tailoring of Graded Composite Structures The overall objec-

tive of this program is to develop and verify analysis and tailoring capability for graded composite

engine structures talcing into account the coupling constraints imposed by mechanical, thermal,

acoustic, and elecuromagneric loadings.

The first problem that was attacked is the development of finite elements capable of accurately

simulating the strucnu'al/thermal/electromagnetic response of graded composite engine structures.

Because of the wide diversity of engine structures and the magnitudes of the imposed loadings, the

analysis of these is very difficult and demanding when they are composed of isotropic, homogeneous

materials. The added complexity of directional properties which can vary significantly through the

thickness of the su'ucmres will challenge the state of the art in finite element analysis. We are

applying AE's 25 years of experience in developing and using strucuu_ analysis codes and the

exceptional expertise of our University consultants toward the successful conclusion of this

problem. To assist in this, we drew heavily on previously funded NASA programs.

We built on NASA programs NAS3-23698, 3D Inelastic Analysis Methods for Hot Section

Components, and NAS3-23687, Component Specific Modeling, in the development of the plate and

shell elements. In addition to these two programs, we drew on NAS3-22767, ESMOSS (Engine

Structures Modeling Software System), and NAS3-23272, Burner Liner Thermal/Structural Load

Modeling, in Task III when we generated a total CSTEM Analysis System around these finite

elements. This guarantees that we are using the latest computer software technology and produced

an economical, flexible, easy to use system.

In our development of a CSTEM tailoring system, we built on NASA Program NAS3-22525,

STAEBL (Su'ucmral Tailoring of Engine Blades) and AE Program, AID (Automatic Improvement

of Design) in addition to the program system philosophy of ESMOSS. Because of the large number

of significant parameters and design constraints, this tailoring system will be invaluable in

promoting the use of graded composite structures.

All during this program, we availed ourselves of the experience and advice of our Low

Observables Technology Group. Their input was used to assure the relevance of the total program.

Figure 1 shows our program and major contributions in flowchart form. This gives a visual

presentation to the synergism that exists between this program and other activities.

Figure 2 depicts an integrated analysis of composite structures currently under development in

the composite users' community. The severe limitations of such a system are not highlighted because

three major steps in the process are not shown. Figure 3 adds these steps. The analysis system really

begins with a definition of geometry. A user then defines a finite element model simulating this

geometry and the anticipated loading. The process then moves to defined Step 3. One cycle through

the process ends with the prediction of individual ply average stresses and strains. Now comes a

significant productivity drain, namely, manual intervention to evaluate these stresses and strains

against strength and durability limits. Based on this, the user must decide to (1) change the finite

element model, (2) change the composite laminate, (3) both of the above, or (4) stop here.

Obviously, there is a considerable cost savings to be obtained by selecting Number 4. The

CSTEM system will obviate the reasons for selecting Number 4. This system, shown in Figure 4,
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begins with the definition of geometry, as before, but then proceeds to a definition of master regions
which contain all of the necessary information about geometry, loading, and material properties.
Step 3 is a constitutive model which develops the necessary structural, thermal, and electromagnetic
properties based on a micromechanics approach. Furthermore, this constitutive model contains the

logic to generate the global finite element model based on the variation of the properties, as depicted

in Figure 5. Using a nonlinear incremental technique, those global models are solved for their

structural, thermal, and electromagnetic response. Based on this response the global characteristics

are evaluated, with convergence criteria and decisions made on remodeling. Once the global
characteristics meet the accuracy requirements, the local characteristics are interrogated and

decisions made on remodeling because of strength, durability, or hereditary effects. Once this cycle

has been stabilized, optimization is performed based on design constraint.

1.1 Executive Summary

"CSTEM" is the acronym for the computer program being developed under the NASA contract,

"Coupled Structural/Thermal/Electromagnetic Analysis/l'ailoring of Graded Composite

Structures." The technical objectives for this progmn are to produce radar signal transparent

structures having high structural performance and low cost. The multidisciplines involved arc all
highly nonlinear. They include anisotropic, large deformation structural analysis, anisotropic

thermal analysis, anisotropic electromagnetic analysis, acoustics, and coupled discipline tailoring.

The CSTEM system is a computerized multidiscipline simulation specialized to the design
problems of radar absorbing structures. The enabling technical capabilities are implemented in a
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special 3D finite element formulated to simultaneously tailor the geometrical, material, loading, and

environment complexities of radar transparent structm'es for cost effective optimum performance.

In each enabling technical discipline a decoupled stand-alone 3D finite element code has been

developed. An executive program with controlling iterative solution techniques performs the

nonlinear coupling among the participating analysis modules. Each analysis module iS'self

contained, passing only the required input geometry and control information between the modules

as well as returning any results which may be required as input for an analysis by a following module.

The structural module uses 8, 16, or 20 noded isopantmetric bricks and is similar to many other

isoparametric finite element codes in many ways. It has the capability for cenu'lfugal, acceleration,

nodal displacement, nodal force, temperature, and pressure loadings. The solution technique used

is a multiblock column solver, which allows solution of very large problems since it can work on

portions of the set of equations separately.

The more advanced features of the structural module include its orthotropic material capability.

Material properties can be input relative to the material axes and then skewed on an element by

element basis to obtain the desired orientation of the material with the global coordinate system.

Material properties may also be referenced to the elemental coordinate system, with the orientation

between elemental and global being calculated internally. The structural module can also generate

the or_otropic material properties it needs for composite materials using the constituent properties

making up the composite. This is done using an internal adapted version of the computer program

INHYD, which accesses a data _ containing the material properties of the constituents. The

properties are calculated based on the volume ratios of the constituents.

Another advanced feature of the CSTEM structural module is its multiple layer capability. This

allows the modeling of composite structures with many material layers without the necessity of

using an element for each layer. The stiffness of an element with multiple layers is calculated using

integration points located on the midplane of each layer within the element. The composite stiffness

gradient controls the finite element det'mifion of a strucnne with two major parameters to vary: the

number of elements through the gradient and the number of numerical quadrature points within an

element. A unique set of local stiffness characteristics is developed for each numerical integration

point. Integration of these local characteristics over the volume of the element provides total element

simulation of composite structures, including such effects as twist-bend coupling. The stress and

strain are then recovered at these same integration points.



The structural analyzer also performs large deformation analysis using a unique incremental

updated Lagrangian approach with iterative refinement. Testing of this capability against classical

large deformation problems has shown it to be both more accurate and more economical than

available alternatives. Connected with this capability is a deformed position eigen-analysis

capability. All or selected portions of the nonlinear stiffness terms can be incorporated into these

eigen-analyses. This capability has been checked out against available test data and other computer
codes.

There is a requirement that the element shape follows the layup of the structure so that the layers

cut through opposite faces of the element at the same height and not diagonally across the element.

This requirement points to the use of a mesh generator, wh/ch is a part of the CSTEM structural

module. The CSTEM mesh generator is capable of producing various solids of revolution from a

minimum of input parameters. The generator can produce flat surfaces, cylinders, cones, and general

double curved surfaces of up to 360 ° rotation. These different surface types can be generated

together. The generator will check for coincident nodes and keep only one of any nodes which have

the same coordinates. When generating more than one surface, care must be taken that the surfaces

are generated so that the connecting nodes will have the same coordinates.

Another capability that can be used together with the multiple layer capability is a composites

analyzer, which is adapted from the ICAN computer program. This capability must also be, used

together with the INI-IYD generation of material properties. The composites analyzer takes the

stress/strain results from the structural module and integrates them through the thickness of the

structure at some user specified location. This results in a loading which can be used by the

composites analyzer to do a microanalysis of the composite at that particular location.

The heat u'ansfer module has the capability to perform four different analysis types. In increasing

order of complexity these are linear steady state, nonlinear steady state, linear transient, and

nonlinear transient. The types ofloadings that can be used in the heat wansfer analyses are nodal and

surface heat fluxes, convection, radiation, and internal heat generation. The material thermal

conductivity and specific heat are required as material properties. Table 1 lists the parameters

involved in the various heat transfer analysis types.

In the nonlinear analyses, malerial properties are entered at several temperature points and

interpolated to the calculated temperatures. The solution is iterated upon until convergence is

achieved.

In the transient analyses, time steps are specified and boundary conditions are entered at each

of these time steps. The solution is_obtained and printed out at each lime step point by stepping along

a series of evenly spaced user specified time subincrements.

When doing the heat u'ansfer analysis as pan of a coupled solution, the calculated nodal

temperatures are passed to the structural module so that the su_'tural material properties and

thermal strains arc calculated using these temperatures. A structural solution can be obtained at

specific time step points as requested by the user input in the case of a uansient heat transfer analysis.

The layering capability of the su_cmral module is also used in heat transfer. This and the ability

to specify orthouopic material thermal conductivities provides the capability to perform heat

transfer analyses of composite mat=rials. The INHYD micromechanics program for generating

laminate material properties from the material constituents is also available from the heat transfer

module to generate thermal properties.

6



Table 1. Thermal AflalyziWo

ThermalParametersand SteadyState Transient
BoundaryConditions Linear Nonlinear Linear NonlinearI

• Temperature T T T(t) T(t)

• Time ..... t t

• ThermalConductivity kij kij('l') kij(t) kij(T,t)

• ConvectionCoefficient h h(T) h(t) h('r,t)

• InternalHeat Generation Qi Qi Qi (t) Qi (t)

• SurfaceHeat Flux Qs Q s Qs (t) Qs(t)

• ConvectionBoundary Qc Qc Q ¢ (t) Qc(t)

• SpecifiedNodal Ts Ts Ts (t) Ts (t)
Temperatures

• Heat Capacity -- Cp(r) -- cp (T,t)

• RadiationEmissivity -- £(T) -- £ (T,t)

• ViewingFactor -- f -- f (t)

The electromagnetic absorption module has tlu'ce options for calculation of absorption. A11ttu-ee
methods use a data bank of absorption material properties. The first method uses the computer
program WAVES as a subroutine in CSTEM. This prognun calculates the reflection and
transmission of electromagnetic waves given a layup sequence of materials and their

electromagnetic properties. Using this layup the WAVES program develops complex impedances
to calculate reflection and transmission coefficients for the cross section. The electromagnetic
properties needed are complex values of the permittivity and permeability, which are obtained from
the data bank.

The second method calculates reflection, refraction, and attenuation of electromagnetic waves
by using $neH's Law, the Fresnel Formulas, and the attenuation constant as derived from the vector

wave equations. This method requires the material properties of perminivity, permeability, and
conducuvity to be available as a function of temperature and frequency on a data bank: similar to
the t'u-stmethod.

The third method usesa data bank that is different from the first two methods in that it contains

absorption properties for the material at not orgy discrete values of temperature and frequency, but
also polarization angle. The absorption of electromagnetic energy of a specific frequency and
polarization by a given material at a specific temperature is calculated by linearly interpolating from
the discrete data bank values.

The orientation of an electromagnetic wave is specified similar to a skew material so that a
coordinate system is associated with the wave propagation. This wave coordinate system is defined

such that the direction of propagation is along the positive Z axis and polarization is measured from



the positive X axis. The orientation of the wave coordinate system with the global coordinate system

is specif'_d using skew transformations.

The element face upon which the electromagnetic wave is impinging is specified by the input.

The path taken through the su'ucture thickness is determined by the program assuming that the wave

always exits r_u-ough the opposite element face that it entered. Absorption calculations are made for

each material encountered and are carried out using midsurface centroid values of temperature and

orientation. The impingement angle is calculated as a dot product of the wave coordinate system Z

axis and the midsurface centroid normal. The polarization angle is calculated as the dot product of

the projection on the layer midsurface of the wave polarization and the material orientation,

Absorption calculations are done for one given frequency, orientation, and wavepath at a lime.

If it is necessary to calculate results for several frequencies, orientations, or wavepaths, a separate
calculation must be done for each combination.

The approach to calculate acoustic characteristics due to su'ucmral vibration in CSTEM

determines the radiation efficiencies of a structure for each vibration mode as a function of

frequency. An eigen-analysis produces the fundamental modes and mode shapes. Once the radiation

efficiencies for each mode are calculated, the total sound power is obtained by a modal summation
of the contribution from each mode.

CSTEM tailoring capability has been built on the STAEBL computer program obtained from

NASA Lewis. This program consists of two major modules: CONMIN, which performs the actual

tailoring, and ANALIZ which supplies the parameters to be tailored. The CONMIN module was

abstracted from STAEBL and coupled with the CSTEM sn'uctural, thermal, electromagnetic, and

acoustic analysis modules.

Figure 6 contains a flowchart of the major analysis modules of CSTEM. These modules are used

as a stand alone analysis package with entry through the main executive routine, or as the analysis

portion of the tailoring process in which case the entry to these modules is at the load case level.

Figure 7 is the flowchart of the tailoring process itself.
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2.0 Technical Program

2.1 Additional Capabilities

2.1.1 Buckling Capability

Buckling capability was added to CSTEM by combining features available from other
capabilities of the code. The buckling analysis is very similar to a free vibration analysis with the

negative of the stress stiffness matrix used in place of the mass matrix. The resulting eigenvalues
are multipliers to the current load that would give the critical load. This means that an eigenvalue
of 1.0 indicates that the load is at the critical value. A negative eigenvalue indicates that buclding

cannot occur in the current load configuration. The inherent assumption in using the eigenvalues as
load multipliers is that the load to stiffness relationship is linear.

BucHing analysis can be turned on and off from load case to load case. Stiffnesses relating to

the original configuration or to the current displaced configuration can be used allowing geometric
nonlinearities to be taken into account.

Checkout cases on columns in which the critical Euler loads can be easily calculated give

excellent results. For a 10 inch long fixed end column with a 1 x 1 inch square cross section and a
Young's modulus of 10E6 the Euler load is 20561 pounds. Modeling this column with a 1000 pound
compressive end load gives an eigenvalue of 20.9 with multiplicity of 2. For a I x 2 inch cross section

the Euler load in the short dimension is 41123 and 164493 in the long dimension. The resulting

eigenvalues for this configuradon were 42.1 and 163.3 using the same 1000 pound end load.
Increasing this load resulted in a similar decrease in the eigenvalues, with an extreme of a 100000

pound load on the 1 x I column resulting in eigenvalues of O.21. Using a tensile load, the eigenvalues
become negative and convergence was not achieved in the 16 iteration limit.

2.1.2 Modeshape Slope Calculation

The maximum value of the modeshape slope is considered an important criterion in the design

of airfoils, particularly in relation to stability. A routine (MSHPSLOP) that approximates the
chordwise slope of a surface represented by the eigenvectors of up to 8 of the lowest natural

frequencies has been implemented in CSTEM. This approximation is computed as described below.

The nodes of the finite element model are points on the surface of an airfoil on sectors from the

root to the tip. The Lagrangian surface defined by 3 consecutive sectors establishes a coordinate

plane. The cross partial derivative of the x and y components of the eigvenvectors is defined as the

modeshape slope at the point on the chordline. This derivative is computed by 3 point Lagrangian
interpolation.

2.2 Program Verification

A large part of the effort of the past year has been on verification of the CSTEM program.

Although many test cases have been run as various capabilities were added to the program, a
verification of the complete package is necessary. This was done by analyzing simulated
components and examining the results to determine whether they are reasonable. In some cases,
actual components were used and results from previous analyses using other codes could be
compared to those obtained from the CSTEM code.

11



2.2.1 Stiffness Integrstlon Study

The layered 3D element in CSTEM is based on the assumption that the calculation of the element

stiffness can be fairly accurately done using a Gaussian distribution on the layer midplanes and

summing over the layers in the third direction. A study of the error involved in using this method

to integrate element stiffnesses was done. The free vibration frequency of an isotropic cantilever

beam was calculated using several different numbers of equal thickness layers. Figure 8 shows the

results of this study in comparison to using a 3x3x3 Gaussian integration, which would give the best

expected result for the 20 noded brick elements. It can be seen that even with 3 layers the results are

within 6% of those obtained with the exact integration. Table 2 shows some additional results for

uneven thickness layers, k can be deduced from this study that any reasonably close to even

thicknesses will give good results; however, extreme differences in thicknesses can give erroneous

results.
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Figure 8. Frequency 04 Layer Integrated Isotroplc Beam.

2.2.2 Simulated Components

2.2.2.1 Exhaust Duct

A simulated exhaust duct was analyzed using different mesh densities to examine the sensitivity

of the solutions in terms of the mesh density. When using the tailoring capability of the CSTEM

12



Table 2. Layering Integration Error Results.

No. Of Layers

2

Layer Distribution RatioTo3 x3 x3

60%, 40% O.85
20%, 80% 0.59

20%, 6o%, 20% 0.88
10%, 80%, 10% 0.70
2%, 96%, 2% 0.34

5

20%, 30%, 30%, 20% 0.%
10%, 40%, 40%, 10% 0.93
2%, 48%, 48%, 2% 0.88

10%, 27%, 26%, 27%, 10% 0.97
2%, 32%, 32%, 32%, 2% 0.95
1%, 1%, 96%, 1%, 1% 0.34

6 10%, 4*(20%), 10% 0.98

program several solutions of a problem may be needed to define an optimum of parameters. It is

therefore necessary to use a coarse model of the component to reduce execution time.

The simulated duct is 20 inches long, has a 10 inch I.D. and a 1 inch wall thickness. Two mesh

densities were used, the coarse mesh containing 264 nodes and 34 elements, and the f'me mesh

containing752 nodes and 96 elements. The meshes are shown in Figures 9 and 10. The duct is

composed of 4 layers through the wall thickness. Each layer is the same material, T300/IMHS fi'om

the ICAN data bank. The layers arc oriented at +60, -60, -60, +60 with respect to the duct

circumferential direction. The duct is fixed at the root end and is loaded with thermal and pressure

loads, with the major loading being a tip displacement of 1 inch in the X direction. A 3 by 3 Gauss

integration is used for each layer in an element.

The results presented are from three integration points per element, all located at the same axial

position in the respective models. However, since the fine mesh model was refined axially as well

as circumferentially the integration points are not at the same axial locations as in the coarse mesh

model. The axial location of the displayed results of the coarse mesh model is 5 inches from the root

while the fine mesh results arc f_an axial location of 3.33 inches from the root. This prevents a strict

quantitative comparison between the models, but a qualitative comparison is still illuminating.

Figures 11 and 12 compare the axial (global Y) strain about the circumference for the coarse mesh

and fine mesh as calculated in the root elements. Figures 13 and 14 compare the axial stress for the

two models. Figures 15 and 16 compare the strains in the fiber direction of each ply for the two
models.

The results from this examination tend to verify the concept that should be applied in tailoring

components using CSTEM. The effect of the mesh coarseness is apparent in the plots, especially

between elements. When looking at trends however, the coarse mesh predicts maximum and
minimum occurrences at the same locations as the finer mesh. The actual maximum and minimum

predicted values also appear to be close. The global strain values are very continuous as expected.

The global stress values show a distribution that depends on the strains in the fiber directions. This
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appears to be reasonable, especially since the fibers are oriented so that they are only 30 degrees off
of the duct axis.

2.2.2.2 Fan Frame

A simulated fan frame model comprised of 992 nodes and 88 twenty node bricks was run with

overall loads as shown in Figure 17. This simulated frame has an outer case I.D. of 100 inches with

an outer case thickness of 3 inches, and a hub ID of 20 inches with a hub thickness of 1 inch. There

are 8 equally spaced struts of 1 inch constant thickness.

M torclue = 1,000,000 in-lb

- Rgure 17. Fan Frame Loads.

The loads were disuibuted about the outer case rear face with the hub rear face held fixed. The

axial force and torque moment were distributed evenly about the outer case while the shear force

was distributed about the outer case as a function of sin O and the overturning moment as a function

of cos e. These loads are typical blade out loads that a frame would have to withstand.

This model was run in CSTEM using isotropic material properties with 3rd order stiffness

integration and also with orthotropic layered composite properties. The resulting deflected shape

for the isotropic material frame is shown in the two views of Figure 18 with a 10X scale. Figure 19

shows the composite material frame deflections with a 1X scale. The composite frame took about

3 times longer to run than the isotropic frame. The major difference in computation t_ne between

the composite and isotropic frame models is in the element stiffness and printout phases, which
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Figure 18. Isotro_l¢ Fan Fame Deflected Shape.
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Figure 19. Deflected Composite Fire Frame.

require computations at each integration poinL The isotropic frame has 2376 integration points and

the composite model has 10512 integration points.

The fan frame with composite properties had a maximum of 22 layers in the outer case elements.

The element layering was applied making use of the similarity in the different elements. A

representative layup for each of the different elements (outer case, hub, strut) was calculated and

then applied to all similar elements. Figme 20 shows the representative layups. Material 2 is a

simulated composite material and material I is an isotropic material used as a stiffcore. The material

properties are shown in Figure 21.

2.2.2.3 Fan Blade -

A composite fan blade model of an actual unducted fan blade was used as a simulated

component. The originalmodel used 8 noded bricks,threethrough thethickness.This was converted

to 20 noded bricks,one through the thicknessas shown in Figure 22. The 20 node brick model
contains 160 elements and 1263 nodes.

The blade containsthreedifferentmaterials:two composite materialsand a titaniumcore.One

composite materialisused in 6 outerlayersof 0.016 ply thickness.The second composite material

isused in0.030 ply thicknessesinternaltotheblade.The titaniumcoreextendsfrom theroottoabout

halfway to the dp for about halfof the chord at the centerof the blade and istapered so thatitis

covered by roughly 0.21 inches of composite material.The composite materiallayerswere input

as the actual thicknesses,while the titanium material was included in 0.030 thicknesses.This
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Number of Layups to be Formed: 3

Layup Number 1

Beginning ELEM No. 20 Io 0 C/S Axis: 3 Gen Order Used: 3

Resulting 1.2 Layup No. 1

Cross Section Begins with E]ement 20 Along TAxi,=
Tolal Thickness ,, 3.0015

Laye¢ Mall. Thk:k. Fraction Angle
I 2 0.33317E-01 30.000

2 2 0.33317E-01 -30.000

3 2 0.33317E-01 30.0(X)
4 2 0.33317E-01 -30.000

5 2 0.33317E-01 30.000

6 2 0.33317E-O1 -30.000

7 2 0.33317E-01 :_;),04;_
8 2 0.33317E-01 -30.000

9 2 0.33317Eo01 30.000

10 2 0.33317E-01 -30.000

11 1 0.16658 0.00000

12 1 0.16658 0.00000

13 2 0.33317E-.01 -30.000

14 2 0.33317E-01 30.000

15 _ 0.33317E-01 -:}9,000

16 2 0.33317E-01 30.000

17 2 0.33317E-01 -30.000

18 2 0.33317E-01 30.000

19 2 0.33317E-01 -_0.000

20 2 0.33317E-01 30.000

21 2 0.33317E-01 -30.000

22 2 0.33317E-01 30.000

LTRAN

0

0

0

Layup Numl)or 2

Beginning ELEM No. 4 Io 0 C/S Axis: 3 Gen O_ler Used: 2

Resullin(j 1/2 La_ NO. 2

Cross Section Begins with Element 4 Along T A=il
TolaJ Thic_less ,, 0.99944

La_,er Malt. Thick. Fraction Ar_le
I 2 0.I0006 0.00000

2 2 0.10OO6 90.000

3 2 O.1OOO6 0.00000

4 2 0.10006 90.000

LTRAN

5 1 0.99777E-01 0.00000 0

6 1 0.99777E-01 0.00000 0

7 2 0.1OO06 90.000 0

8 2 0.10006 0.00000 0

9 2 0.1OOO6 9O.0OO 0

10 2 O.1OO08 0.00000 0

Layup Numbe¢ 3

Beginning ELEM No. 45 to 0 C/S Axis: 3 Gen Orde¢ Used: 1

Resulting 1/2 I._yup No. 3

Cross Section Becjins wilh Elemenl 45 Alon_ T Axis
Total Thic_,J_s| ,,, 1.0000

Layer Mall. Thick. Fraction Angle LTRAN

1 2 0.1OO00 60000 0

2 2 0.10000 -60.000 0

3 2 0.1O0O0 60.000 0

4 2 0.10000 -60.000 0

5 1 0.10000 0.00000 0

6 I 0.1OOOO 0.00000 0

• 2 0.10000 -60.000 0

8 2 0.1O000 60.000 0

9 2 0.10000 -60.000 0

10 2 0.10000 60.000 0

Figure 20. Representatlve Layups of Outer Case, Hub, and Strut.
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Material Elastic Properties

MTN RTEM MTP DEN
1 70.0 1 0.2980

Temperature EXX EYY EZZ PXY PYZ PXZ GYX GYZ GXZ ALX ALY ALZ
70.0 30.0 30.0 30.0 0.31 0.31 0.31 11.4 11.4 11.4 0.0 0.0 0.0

MTN RTEM MTP DEN
2 70.0 1 0.0554

Temperature EXX EYY EZZ PXY PYZ PXZ GYX GYZ GXZ ALX ALY ALZ
70.0 18.8 1.2 1.2 0.26 0.42 0.26 0.6 0.4 0.5 -0.2 15.3 15.3

Roure 21. Composite Frame Material Properties.

_-_ i
J

F_um 22. __ Fin B_le.

resulted in the number of layers per element ranging from 6 at the tip wailing edge to 76 at the root
midchord.

Free vibration frequencies of a test blade are available to compare with this model. The fast 8

free vibration modes were calculated in CSTEM and are shown in Figures 23 through 30 along with
the test results. The CSTEM results were obtained using 370 CPU seconds on the CRAY-XMP. It

can be seen that the agreement with the test results is very good. These experimental test blade results

can be scaled to the full scale blade. Table 3 contains the scaled full size blade experimental

frequencies.

22



MPS Blade

__FrP/N A53

A5304

equency 188 Hz
ncave Side

t

(Max. Disp ,, 10, View -1 5 -1 )

\

Figure 23. Mode 1, Predicted Frequency = 173.48 CPS.

. MPS Blade
\ P/N A53

\S/N A5304

N_r_uency 506 Hz
ave Side

(Max. Disp = 10, View -1 5 -1)

Flgum 24. Mode 2, Predlcted Frequency = 506.72 CPS.
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M PS Blade
/N A53

A5304

uency 686 Hz

ave Side

\
t I

(Max. Disp= 10, View -1 5-1)

/

Figure 25. Mode 3, Predicted Frequency: 618.66 CPS.

MPS Blade

Frequency 1008 Hz
Concave Side

MPS Blade
P/N A53
S/N A5304

(Max. Disp = 10, View-1 5-1)

Frequency 1038 Hz

Concave Side

Figure 26. Mode 4, Predicted Frequency = 1083.60 CPS.
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MPS Blade
PIN A53

A5304

uency 1346 Hz
cave Side

(Max. Disp = 10, View -1 5 -1)

/

Figure 27. Mode 5, Predicted Frequency = 1229.57 CPS.

MPS Blade
P/N A53
SIN A5304

requency 1570 Hz
3oncave Side

(Max. Disp = 10, View-1 5-1)

Figure 28. Mode 6, Predicted Frequency = 1632.29 CPS.
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MPS Blade
P/N A53
S/N A5304

Frequency 2078

Concave Side

(Max. Disp = 10, View -1 5 -1)

Figure 29. Mode 7, Predicted Frequency : 1940.58 CPS.

_ MPS Blade

t

P/N A53

A5304

uency 2268 Hz
ve Side

(Max. Disp = 10, View -1 5 -1)

Figure 30. Mode 8, Predicted Frequency : 2300.59 CPS.
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Mode

1
2
3
4
5
6
7
8

Table 3. Composite

CSTEM
Linear 4 LC. eq Itar

31.05 51.84 51.78
90.69 105.11 105.77

110.70 137.98 137.40
193.92 212.98 214.09
219.98 248.71 248.00
292.08 315.14 316.91
347.02 392.74 392.03
413.34 445.67 447.75

Fan Blade Frequencies.

Previot_ Analysis
Unear Stiffened

33.1 49.868
95.5 105.650

121.3 150.589
204.1 224.608
245.5 275.572

345.681
444.276
481.521

Test

33.65
90.57

122.79
165.80
240.93
281.03
371.96
405.97

The full scale model of the composite unducted fan blade model was run with a centrifugal

loading of 1341 RPM, which is the actual speed for this blade. Two different updated Lagrange large

displacement analyses were done at this speed as well as a linear analysis.

One of the large displacement analyses used no equilibrium iterations, but stepped up to 1341

RPM in 3 load cases (500, 1000, 1341) with a fourth load case at 1341 RPM so that the full stiffening
effects would be included. The other large displacement analysis used a single load case to 1341

RPM, but with 5 equilibrium iterations. This analysis converged to a displacement difference
between iterations of 1.78E-3.

The 4 load case large displacement analysis resulted in a max tip deflection of 0.6883 inches and

took 2820 CPU seconds on the CRAY. The equilibrium iteration large displacement analysis gave
a max tip deflection of 0.7536 inches, which took 2351 CPU seconds on the CRAY. The linear

analysis gave a max tip deflection of 1.423 inches and took 508 CPU seconds. The calculated

frequencies for each of these cases is shown in Table 3. As a comparison, the frequencies calculated

in a previous GE analysis of this blade using a different code are also listed in Table 3.

Also available for comparison are mode shape slopes, which are used in aeromechanical stability

analyses of the blade. Figures 31 through 36 show a comparison of calculated mode shape slopes

at 83% span between the previous GE analysis and the CSTEM analysis for the first 6 stiffened

vibration modes. Agreement between the results is very good. A less tangible, but no less significant

comparison might be made in that the previous results require a great deal more manipulation of data

requiring several different computer programs to be run, while the CSTEM code is essentially self
contained.
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Figure 31. Mode Shape Slope at 1341 RPM, Mode 1.
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Figure 32. Mode Shape Slope at 1341 RPM, Mode 2.
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Figure 35. Mode Shape Slope at 1341 RPM, Mode 5.
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Figure 36. Mode Shape Slope at 1341 RPM, Mode 6.
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2.2.2.4 Turbine Frame

A simulated turbine rear frame was analyzed by CSTEM. This model consists of 1288 nodes and

147 elements. The hub has an I.D. of 2 feet and a thickness of 1 inch. The outer case has an I.D. of

5 feet and a thickness of 6 inches. There arc 7 struts of 1 inch thickness that attach to the hub at a

45 degree angle. There is also a 1 inch thick cone that is attached to the hub forward face which

reduces from a 2 foot I.D. m a 1 foot I.D. to simulate a bearing support. The model is pictured in
Figure 37.

\
\/

/

Figure 37. Simulated Turbine Rear Frame.
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The simulated frame was run using INCOT18 ma_rial properties and loadlngs to simulate a

throu.le burst from idle to takeoff power. A nonlinear transient heat u'ansfer analysis from 0 to 30

• seconds was run with the entire frame initially at 500°1= and subject to a hot gas path temperature

of 1100°E A flow of 500eF cooling air was maintained on the hub and support cone inner diameter

and on the outer case outer diameter. Convection coefficients and specific heats were varied with
time.

Structural loadings were typical aft mount loads of 7000 lbs. applied to the outer case at 26

degrees on either side of the top. The outer case O.D. was fixed from moving outward as was the

forward most LD. of the support cone. Structural solutions were performed at the 12 and 30 second

timepoints. Figures 38, 39, and 40 show results from this analysis, which took 390 CPU seconds on
the CRAY-XMP.

72.7

NODE TEHP
B 690.
C 730.
D 770.
E 810.
F 850.
G 890.
H 930.
I 970.
J 1010.

Figure 38. Temperature Distribution at 12 Seconds.
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HODE TEMP
A 8O0.
B B30.
C 860.
D 890.
E 920.
F 950.
G 980,
H 1010o
I 1040.
J 1070.

Figure 39. Temperature Distribution at 30 Seconds.

Figure 40. Deflected Shape (10X) at 30 Seconds.
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2.2.2.5 Turbine Blade

A heat transfer analysis of an actual turbine blade was performed andcompa.,ed with results from

a heat transfer code currently used at GE. The blade is a hollow blade and must be modeled in slices

for use in the other heat transfer code. This restriction is not necessary in CSTEM, but for

comparison purposes the same sliced model was used. The blade slice model is shown in the Figure

41 inset. The model consists of 924 nodes and 338 elements. The elements used are 8 node bricks.

The material is Ren_ NS, an isotropic material.

A nonlinear transient analysis of the blade slice was performed with results as shown in the

contour plot of Figure 42. The comparison between these results and those obtained previously is

shown in Figure 41. As can be seen the results are nearly identical with those obtained previously
from the other code.

A simulated turbine blade is also being examined so that a more complete analysis may be

demonstrated. The model to be used is shown in Figure 43. This model consists of 503 nodes and

60 elements, which are 20 node bricks. This is basically a scaled up model of an existing SSME blade

model that was available. The overaU span of the simulated blade is roughly 2 inches with a tip radius

of approximately 13.8 inches.

2.3 Tailoring

The tailoring function of CSTEM can handle a number of different procedures with the same

general progrmn. This is accomplished by a software interface between the tailoring function and

the structural, acoustical, heat transfer routines, etc. This interface is a FORTRAN subroutine

ANALIZ. There is an input file read by COPES to specify the variables used and type of tailoring

to perform. The ANALIZ routine re_.ads this input file and handles the input and output between

the analysis modules involved and the tailoring logic. This is done by calling specific routines

depending on the specified tailoring procedure. The currently available tailoring procedures are

described in the following example test cases and simulated component cases.

2.3.1 Test Cases

2.3.1.1 Absorption Tailoring

The object function is electromagnetic absorption. This function is to be maximized for a finite

element model constructed of layers of different composite materials. The thickness of each of the

layers arc used as design variables. These thicknesses are expressed in terms of the element thickness

fractions. Figure 44 shows a simple cantilever beam test case consisting of 3 initially equal thickness

layers of different material with a I0 GHz normally incident electromagnetic wave. The energy

absorbed increased from 6.2% to I 1.1% while the layer thickness fractions changed from 0.333 for

each layer to 0.09, 0.54, and 0.37. Figure 45 shows the percentage change in absorption for each

evaluation throughout the tailoring process. The total analysis took 3 CPU seconds on the
CRAY-XMP.

2.3.1.2 Acoustic Tailoring

The object function is noise generated by a finite element model subject to sound source of a

specific magnitude and frequency. In the case considered the structtu-c is composed of 4 equal

thickness layers of a composite material subject to a 565 cps source at 4000 dB. The angles of the

layers are the design variables and their variations produce natural frequencies and mode shapes to
minimize the reflected sound. The noise was reduced from 7.1612-6 watts to 2.13E-7 watts. The final

layer angles are 79, 90, 90, 79 degrees. Figure 46 shows the model used and Figure 47 shows the
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NODE TENP
B 1100.
C 1200.
D 1300.

E 1400.
F 1500.
G 1600o
H 1700o
I 1800.

3 1900.

Figure 42. (:STEM Heat Transfer Results for Turbine Blade Slice.

Figure 43. Simulated Turbine Blade (3,2,1).
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Figure 45. Absorption Tailoring Results.
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percentagechange inthenoisewithevaluationnumber.This casetook200 CPU secondson the
CRAY-XMP.

2.3.1.3 Frequency Tailoring

The object function is the lowest of the first 3 natural frequencies of a finite element model. As

withacoustictailoring,themodel considerediscomposed of4 equalthicknesslayersofa composite

material. The angles of these layers are the design variables. They are changed to minimize the
object function. The other 2 frequencies are constraints. The fundamental frequency was lowered
from 561 cps to 351 cps, with final layer angles of 25, 51, 51, 25 degrees. Figure 48 shows the model

used and Figure 49 shows the percentage change in the frequency with evaluation number. This took
71 CPU seconds on the CRAY-XMP

2.3.1.4 Weight Tailoring

The objectfunctionistheweightofthemodel.For theweighttailoringthefiniteelementmodel

isa cantileverbeam 8 incheslongand 3 inchesthick.The designvariablesarethelayerthicknesses
(expressedas elementthicknessfractions),layerorientation,and fibervolume ratios.Use of the

fibervolume ratioasadesignvariableisdoneby calculatingplymaterialpropertieswiththeINHYD

routines.One constraintisused: thelowestnaturalfrequencyistobe largerthan200 cps.Initial
thicknessfractionsof0.30,0.25,0.45;anglesofg0,90,45 degrees;fibervolume ratiosof0.6,0.6,

0.6givea weightof0.503witha low frequencyof 430 cps.After13iterations,a weightof0.469
isobtainedwitha low frequencyof558 cps.The designvariablesfinalvaluesarethicknessfractions
of 0.45,0.35,0.20;anglesof90,90,45 degrees;and fibervolume ratiosof 0.6,0.6,0.6.

2.3.1.5 Cost Tailoring

The objectfunctioniscost,which isminimized.The testcaseconsistedof a cantileverbeam

modeled as eight8-noded bricks.Each brickconsistsof 3 layersof compositematerials.The

materialangles,percentof thickness,and primaryfibervolume ratiosforeach ofthe3 layerswere

the9 designvariablesused.A constraintofthelowestnaturalfrequencywas alsoused.The costper
unit volume of the primary fiber was inpuL

The 3 composites and the normalized costs used were:

AS-- @ 5.6 cost per unit fiber volume

T300 @ 2.3 cost per unit fiber volume
SGLA @ 1.1 cost per unit fiber volume

Costofthelayupstartedat13.2withplyanglesof90,90,and 45 degrees;plythicknessfractions

of0.30,0.25,and 0.45;and fiberratiosof0.6,0.6,and 0.6.After14iterationscostofthelayupwas

reducedto9.6.The plythicknessfractionschanged to0.14,0.22,and 0.64,respectively.The other
design variables remained the same.

2.3.1.6 Thermal Tailoring

Two different thermal tailoring procedures were set up. In the first case the maximum nodal

temperature is minimized. The model used consists of a 1 inch square plate made of 4 layers of a

composite material, containing 96 nodes and 9 20-noded elements. There are 10 pound forces at 2

nodes and the nodes along an edge are fixed. All nodes are initially at 100°F. The heat transfer input
specifies that one face of an element is cooled by convection and there is a heat flux of 12960 bm/hr

on the face of another element. Four nodes have prescribed (fixed) temperatures of 100°F. The
optimization input specifies that the fiber angles, percent of thickness, and fiber volume ratios of
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the 4 layers are design variables and the maximum nodal temperature is the object function (to be

minimized). Initial angles of 90, 90, 45, 45 degrees; thickness fractions of 0.30, 0.25, 0.30, 0.15;

fiber ratios of 0.6, 0.6, 0.6, 0.6 give a maximum temperature of 124°E After 16 iterations the design

variables have changed to angles of 86, 45, 43, 44 degn:es; thickness fractions of 0.28, 0.24, 0.27,

0.20, and fiber volume ratios of 0.6, 0.6, 0.6, 0.6. The final maximum temperature is 119°F.

The second heat transfer tailoring procedure minimizes a temperature gradient. The trmite

element model used is a cantilever beam 8 inches long and 3 inches thick consisting of 20 8-noded

brick elements and 102 nodes. Each element is composed of 3 layers of composite materials. The

fixed end of the beam has a prescribed temperature of 1000°F. The free end is cooled by convection.

The optimization design variables are the same as for Case 1. The object function is the difference

between the maximum and minimum nodal temperatures and is to be minimized. Initial thickness

fractions of 0.33, 0.33, 0.34; angles of 45, 30, 90 degrees; fiber ratios of 0.6, 0.6, 0.6 give a

temperature gradient of 490 degrees. After 280 iterations, the thickness fractions are 0.67, 0.31,

0.02; angles 90, 0, 90 degrees; fiber ratios of 0.6, 0.6, 0.6 give a temperature gradient of 309°F.

2.3.2 Slmulated Components

2.3.2.1 Compressor Blade

A simulated composite compressor blade was used to demonstrate the tailoring of mode shape
slopes, a criteria used in stability analysis of blades. The blade model consists of 100 8 node brick

elements and 242 nodes. It is based on the J85 Stage 5 compressor blade, which is made of titanium.

In order to change the vibration characteristics of the blade, the simulated model consisted of 4

simulated composite materials distributed through the blade thickness using the automatic layering

capability of CSTEM. The generation set consisted of 8 plies of the 4 different materials. Figure 50
shows the blade model.
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\

Figure 50. Compressor Blade Model.
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The thickness of the generation set layers and their orientation angles comprised the 16 design

variables, with the object function being the maximum mode shape slope of the lowest natural

frequency. After 42 iterations and 488 CPU seconds on the CRAY-XIVIP this slope was reduced from

0.316 to 0.254. The gradient vector showed the thicknesses have very little effect on this slope, while

the greatest effect came from the orientation angles.

2.3.2.2 Fan Blade

The fan blade shown in Figure 51 was tailored to minimize weight while keeping the lowest

nanmd frequency above a value of 20 cps. The layering is done using the automatic layering

capability of CSTEM. Three separate generation sets are used. Each generation set contains a

separate material. The first set contains 6 layers of equal thickness composite material in a sequence

of orientation angles. The density of this material is 0.055 lbfm 3 and an initial layer thickness of

0.016 inches. The second set contains 4 layers of equal thickness composite material in an

orientation sequence with a density of 0.056 lb/'m 3 and initial thickness of 0.030 inches. The material

of the third set is titanium having a density of 0.161 lb/'m 3 and is used to fill the model cross section

thickness remaining after the fh'st 2 generation sets have been used. The initial amount of the cross

section thickness filled by the first two sets is 0.36 inches in the area where the titanium core occurs.
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Figure 51. Coarse Mesh Composite Fan Blade.
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Figure 52 shows the change of the blade weight and lowest vibration frequency throughout the

tailoring process. The change in blade weight is expressed as percent of the original weight of 26.2

lbs. The final blade weight is 17.7 lbs. The frequency is expressed as percent above the constraint

value. The initial frequency is 32.5 cps and the final is 21.0 cps. Figure 53 shows the layup of the

element with the thickest cross section at several evaluation points. The thickness of this element

is 1.868 inches. It can be seen that the tailored blade contains only composite material and that the

amount of Material 1 has been increased to a thickness fraction of 0.08026. This corresponds to a

thickness of 0.15 inches, which is the allowed upper bound input to the tailoring procedure.
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Figure 52. Weight Tailoring of Fan Blade.
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Layer Md Frac_on lAX Angle
I 1 0.8562E-02 3 125.0
2 1 0.85_.E-02 3 215.0
3 1 0.8582E-02 3 170.0
4 I 0.8_2E-02 3 215.0
5 1 0.8582E-O2 3 125.0
8 1 0.8_2.E-02 3 8O.O0
7 2 0.1805E-01 3 125.0
8 2 0.1e05E.O1 3 170.0
9 2 0.1805E-01 3 125.0

10 2 0.1805E-01 3 80.00
11 3 0.1805E-01 3 0.0000
12 3 0.1605E-O1 :3 0.0000
13 3 0.1GOSE-01 3 0.0000
14 3 0.1605E,.01 3 0.0000
15 3 0.1BOSE-01 3 0.0000
18 3 0.1EOSE-01 3 0.0000
17 3 0.1605E-01 3 O.O(X)O
16 3 0.1_05E-01 3 0.0000
19 3 0.1805E-O1 3 0.0000
20 3 0.Ie05E-01 3 0.0{X)0
21 3 0.1_)5E-01 3 0.0000
22 3 0.1805E-O1 3 0.0000
23 3 0.1805E-O1 3 0.0000
24 3 o.leoss-Ol 3 o.oooo
25 3 o.Ieo_-oI 3 o.o_o

3 O.leOSS-Ol3 o.oooo
27 3 o.IeO_.OI 3 o.oooo
28 3 0.1eOSE-01 3 0.0000
29 3 o.IeO55.Ol 3 o.oooo
30 3 0.1(105E-01 3 0.0000
31 3 O.leO_.Ol 3 o.oooo
32 3 o.IeO_-oI 3 o.oooo
33 3 O.leO_.Oi 3 o.oooo
34 3 0.Ie0_.01 3 o.oooo
35 s 0.23e2E-20 3 0.0000

Evaluation 1
(Original)

Layer Marl Frldion LAX Angle
1 1 0.4013 E-01 3 125.0
2 I 0.4013E-O1 3 215.0

3 I 0.4013E-O1 3 170.0
4 I 0.4013E-01 3 215.0
5 1 0.4013E-01 3 125.0

8 1 0.4013 E-01 3 80.00
7 2 0.1605E-01 3 125.0
8 2 0.160SE-01 3 170.0

9 2 0.1605E-01 3 125.0
10 2 0.1605E-01 3 80.00
11 3 0.1605E-01 3 0.0000

12 3 0.1605E-01 3 O.OOO0
13 3 0.1605E-01 3 0.0000
14 3 0.1605E-01 3 0.0000

15 3 0.1605E-01 3 0.00OO
16 3 0.1605E-01 3 0.0000
17 3 0.1605E..01 3 0.0000

18 3 0.1605E.-01 3 0.0000
19 3 0.1605E-01 3 0.0000

20 3 0.1605E-01 3 0.0000
21 3 0.1805E-01 3 0.0000

22 3 0.1605E-01 3 0.0000
23 3 0.5572E-02 3 0.0000

Evaluation 6

Layer M_I Fr_lkm lAX Angle

1 I 0.7100E.01 3 125.0
2 1 0.7100E-01 3 215.0

3 1 0.7100E-01 3 170.0
4 I 0.7100E-01 3 215.0
5 1 0.7100E-01 3 125.0

6 1 0.7100E-01 3 80.00

7 2 0.1605E-01 3 125.0
8 2 0.1605E-01 3 170.0

9 2 0.1605E-01 3 125.0
10 2 0.1284E-01 3 80.00

11 3 o.129gE.Ol 3 o.oooo
Evaluation 11

Layer Mall Fraction lAX Angle
1 1 0.5351E-02 3 125,0
2 1 0.5351E-02 3 215,0
3 1 0.53,_1E-02 3 170.0
4 1 0.5351E-02 3 215.0
5 1 0.5351E-02 3 125.0
8 1 0.5381E-02 3 80.00
7 2 0.1805E-O1 3 125.0
8 2 0.1605C---O1 3 170.0
9 2 0.1805E-01 3 125.0

10 2 0.1805E-01 3 80.00
11 3 0.1GOSE-01 3 0.0000
12 3 0.1805E-01 3 0.0(300
13 3 0.1605E-01 3 0.0000
14 3 0.160SE-01 3 0.0000
15 3 0.1805E-O1 3 0.0(300
16 3 0.1_05E-O1 3 0.0000
17 3 0.1_QSE-01 3 0.0000
16 3 0.1(10SE-01 3 0.0000
19 3 0.1eOSE-01 3 0.0000
20 3 0.1805E-01 3 0.0000
21 3 0.I_5E-01 3 0.0000
22 3 0.1805E-01 3 0.0000
23 3 0.1605E-01 3 0.0000
24 3 0.1805E-01 3 0.0000
25 3 0.1B05E-01 3 0.0000
26 3 0.11g05E.O1 3 0.0000
27 3 0.1BOSE-01 3 0.0(300
28 3 0.1805E-01 3 0.0000
29 3 0.1805E-01 3 0.0000
30 3 0.1805F.-01 3 0.0000
31 3 0.1_105E-01 3 0.0000
32 3 0.1805E.01 3 0.0000
33 3 0.1805E-01 3 0.0000
34 3 0.1e05E-01 3 0.0000
35 3 0.2362E-20 3 0.0000
36 3 0.557"2E-02 3 0.0000

Evaluation 3

Layer M_I Frac_on L4.X Angle

1 I 0.4883E-01 3 125.0
2 I 0.4883E-01 3 215.0
3 I 0.4883E-01 3 170.0

4 I 0.4883E-0t 3 215.0
5 I 0.4883E-01 3 125.0
6 1 0.4883E-01 3 80.00

7 2 0.1605E-01 3 125.0
8 2 0.1605E-01 3 170.0

9 2 0,1605E-01 3 125.0
10 2 0.1805E-01 3 80.00

11 3 0.1605E-01 3 0.0000
12 3 0.1605E-01 3 0.0000
13 3 0.1605E-01 3 0.0000

14 3 0.1605E-01 3 0.0000
15 3 0.1605E..01 3 0.0000
16 3 0.1605E-01 3 0.0000

17 3 O.1605 E-O1 3 0.0000
18 3 0.1605E-01 3 0.0000

19 3 O.lSO5E-Ol 3 o.oooo
Evaluation 10

Layer Marl Fradion IAX Angle

I I 0.8026E-01 3 125.0
2 I 0.8026E-01 3 215.0

3 1 0.8026E-01 3 170.0
4 1 0.8026E-01 3 215.0

5 I 0.8026S.01 3 125.0
6 I 0.8026E-01 3 80.00

7 2 0.1605E-01 3 125.0
8 2 0.2362 E-02 3 170.0

Evaluation 13

Figure ,53. Tailored 1/2 Symmetric: Layups.
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3.0 CONCLUSIONS

The tasks in the NASA Statement of Work for the CSTEM program have been successfully

completed. A finite element computer program that has the capability to analyze the structural,

thermal, electromagnetic, and acoustic characteristics of graded composite materials has been

developed and demonstrated on various test cases and simulated components. Included in this
program is the capability to tailor su'uctures so that a particular characteristic is enhanced while

satisfying other consu'aints. This was also demonstrated successfully. In addition, the CSTEM

computer program has been written in a modular form so that it should be relatively easy and
convenient to add to and modify the features of the program.

The capability exists in the CSTEM computer program to perform comprehensive analyses of

numerous material types ranging from isotropic to advanced graded composites. The tailoring of

these structures using the coupled analyses contained in the CSTEM program is a unique and

exciting capability which may require some experience in order to take full advantage of all aspects

of the program. The possibility of adding to and enhancing these capabilities is another interesting

and potentially beneficial prospect.

45



Form Approved
REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public reporting bur0en for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing 0ata sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collec0on of information, including suggestions for reducing this burden, to Washington Heaaquarter_ Services, Directorate for information Operations and Reports. 1215 Jefferson

Dav=s Highway. Suite 1204, Arlington, VA 22202--4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1992

4. TITLE AND SUBTITLE

Coupled Structural/Thermal/Electromagnetic Analysis/Tailoring

of Graded Composite Structures

Final Status Report

6. AUTHORIS) '

M.S. Hartle, R.L. McKnight, H. Huang, and R. Holt

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

General Electric Aircraft Engines

1 Neumann Way

Cincinnati, Ohio 44135

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

Final Contractor Report

5. FUNDING NUMBERS

WU-505-62-91

C-NAS3-24538

8. PERFORMING ORGANIZATION

REPORT NUMBER

None

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-189153

11. SUPPLEMENTARY NOTES

Project Manager, C.C. Chamis, Structures Division, NASA Lewis Research Center (216) 433--3252.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 39

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Accomplishments are described for the 5-year program to develop a methodology for coupled structural/thermal/

electromagnetic analysis/tailoring of graded component structures. The capabilities developed over the term of the

program are the analyzer module and a tailoring module for modeling of graded materials are summarized. High-

lighted accomplishments for the past year include: (1) addition of buckling analysis capability; (2) addition of mode

shape slope calculation for flutter analysis; (3) verification of the analysis modules using simulated components;

(4) verification of the tailoring module.

14. SUBJECT TERMS

FEM structural analysis; FEM thermal analysis; FEM electromagnetic analysis; Graded

composites; Coupled analysis; Optimization; Tailoring

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

54

16. PRICE CODE

A04
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18

298-102


